964 research outputs found

    Real-time renormalization group and cutoff scales in nonequilibrium applied to an arbitrary quantum dot in the Coulomb blockade regime

    Full text link
    We apply the real-time renormalization group (RG) in nonequilibrium to an arbitrary quantum dot in the Coulomb blockade regime. Within one-loop RG-equations, we include self-consistently the kernel governing the dynamics of the reduced density matrix of the dot. As a result, we find that relaxation and dephasing rates generically cut off the RG flow. In addition, we include all other cutoff scales defined by temperature, energy excitations, frequency, and voltage. We apply the formalism to transport through single molecular magnets, realized by the fully anisotropic Kondo model (with three different exchange couplings J_x, J_y, and J_z) in a magnetic field h_z. We calculate the differential conductance as function of bias voltage V and discuss a quantum phase transition which can be tuned by changing the sign of J_x J_y J_z via the anisotropy parameters. Finally, we calculate the noise S(Omega) at finite frequency Omega for the isotropic Kondo model and find that the dephasing rate determines the height of the shoulders in dS(\Omega)/d Omega near Omega=V.Comment: 16 pages, 7 figure

    Effects of Laser UV-Microirradiation (λ = 2573 A) on Proliferation of Chinese Hamster Cells

    Get PDF
    A laser uv-microbeam with a wavelength of 2573 Å having a minimum spot diameter of approx 0.5 μm was used to microirradiate interphase cells of a V-79 subline of Chinese hamster cells. The incident energy necessary to induce a significant decrease of proliferation was 30 to 60 times larger after microirradiation of cytoplasm as compared with microirradiation of nucleoplasm. The mean value of relative cell numbers 40 hr after irradiation as a function of incident energy did not differ whether the cells were microirradiated lying singly or together in small groups. Analysis of individual growth curves of singly lying cells microirradiated in the nucleoplasm with the same energy showed heterogeneous reactions. The incident energy per cell compatible with proliferation of about 50% of the cells after microirradiation of nucleoplasm was approx. 2× 10sup-3/sup ergs. From this value it is suggested that the energy density within the focus was in the region of several thousand ergs per square millimeter. Photochemical effects are thought to be the cause of growth disturbance, while thermal effects are excluded

    Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor

    Full text link
    We describe single electron tunneling through molecular structures under the influence of nano-mechanical excitations. We develop a full quantum mechanical model, which includes charging effects and dissipation, and apply it to the vibrating C60_{60} single electron transistor experiment by Park {\em et al.} {[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to be essential to molecular electronic systems. We propose a mechanism to realize negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure

    Resonant Tunneling through Multi-Level and Double Quantum Dots

    Full text link
    We study resonant tunneling through quantum-dot systems in the presence of strong Coulomb repulsion and coupling to the metallic leads. Motivated by recent experiments we concentrate on (i) a single dot with two energy levels and (ii) a double dot with one level in each dot. Each level is twofold spin-degenerate. Depending on the level spacing these systems are physical realizations of different Kondo-type models. Using a real-time diagrammatic formulation we evaluate the spectral density and the non-linear conductance. The latter shows a novel triple-peak resonant structure.Comment: 4 pages, ReVTeX, 4 Postscript figure

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers

    Full text link
    We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with diverging second and higher cumulants when the Aharonov-Bohm flux approaches an integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure

    Fingerprints of the Magnetic Polaron in Nonequilibrium Electron Transport through a Quantum Wire Coupled to a Ferromagnetic Spin Chain

    Full text link
    We study nonequilibrium quantum transport through a mesoscopic wire coupled via local exchange to a ferromagnetic spin chain. Using the Keldysh formalism in the self-consistent Born approximation, we identify fingerprints of the magnetic polaron state formed by hybridization of electronic and magnon states. Because of its low decoherence rate, we find coherent transport signals. Both elastic and inelastic peaks of the differential conductance are discussed as a function of external magnetic fields, the polarization of the leads and the electronic level spacing of the wire.Comment: 5 pages, 4 figure

    Persistent currents in mesoscopic rings and boundary conformal field theory

    Full text link
    A tight-binding model of electron dynamics in mesoscopic normal rings is studied using boundary conformal field theory. The partition function is calculated in the low energy limit and the persistent current generated as a function of an external magnetic flux threading the ring is found. We study the cases where there are defects and electron-electron interactions separately. The same temperature scaling for the persistent current is found in each case, and the functional form can be fitted, with a high degree of accuracy, to experimental data.Comment: 6 pages, 4 enclosed postscript figure

    Quantum Phase Transition in a Multi-Level Dot

    Full text link
    We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy in the case of a single conduction channel per lead. By applying the Numerical Renormalization Group, we obtain rigorous results for the linear conductance and the density of states. A new quantum phase transition of the Kosterlitz-Thouless type is found, with an exponentially small energy scale T∗T^* close to the degeneracy point. Below T∗T^*, the conductance is strongly suppressed, corresponding to a universal dip in the density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio
    • …
    corecore